Universität Erlangen-Nürnberg
Department of Computer Science 7
Dr.-Ing. U. Klehmet
Introduction to Data Structures and Algorithms

Exercise sheet 10

Exercise 29:

We use a hash function h to hash n distinct keys into a hash table with m slots, assuming simple uniform hashing. What is the expected number of collisions?
In other words: What is the expected number of elements of the set

$$
\text { Coll }=\{\{k, l\} / k \neq l \text { and } h(k)=h(l)\}
$$

(Coll is a set whose elements are sets of two keys)

Exercise 30:

Consider keys which are character strings interpreted as natural numbers in radix 2^{p}. We use the following hash function

$$
h(k)=k \bmod m
$$

(division method) where $m=2^{p}-1$. Show that if string x is a permutation of string y, then both x and y hash to the same slot.

Exercise 31:

Open addressing:
Write pseudocode for Hash_Delete and modify our procedure Hash_Insert to handle the special value DELETED.

