Universität Erlangen-Nürnberg
Department of Computer Science 7
Dr.-Ing. U. Klehmet
Introduction to Data Structures and Algorithms

Exercise sheet 11

Exercise 32:

A distributed system has three file servers named A, B, C, which are chosen independently with equal probabilities whenever a new file is created. Determine the probabilities of the following events:
a) Server A is selected
b) Server A or B is selected
c) Server A and B are selected
d) Server A is not selected
e) Server A is selected twice in a row
f) Server selection sequence ABCABCABC is observed (in nine successive file creations)

Exercise 33:

Assume the following random experiment:
A regular dice and a coin are tossed at the same time.
a) Determine the corresponding probability system (S, Φ, P).
b) Compute the probability of appearance "Even number of dice and head of coin".
c) Show the linearity of expectation $E[X+Y]=E[X]+E[Y]$ for some suitable random variables $x: S \rightarrow R$ and $Y: S \rightarrow R$ based on probability system (S, Ф, P).

Exercise 34:

Let $x_{1}, X_{2}, \ldots, X_{n}$ be n independent random variable with distribution functions $F_{X_{1}}, F_{X_{2}}, \ldots, F_{X_{n}}$.
a) Let $Y=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the random variable defined by $Y(\omega)=\max \left\{X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)\right\}$ for each $\omega \in S$.
What is the distribution functions F_{Y} ?
b) Let $Y=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the random variable defined by $Y(\omega)=\min \left\{X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)\right\}$ for each $\omega \in S$. What is the distribution functions F_{Y} now ?

