Universität Erlangen-Nürnberg
Department of Computer Science 7
Dr.-Ing. U. Klehmet
Introduction to Data Structures and Algorithms

Exercise sheet 2

Exercise 1:

Assume that there are three algorithms A, B and C for solving a certain problem. The number of arithmetic operations executed by algorithms A, B and C, dependent on the size of the problem input, is 2^{n}, n and $\log _{2} n$, respectively. We assume that the execution time of an arithmetic operation is one microsecond.
a) What ist he maximal problem size that can be dealt with by algorithms A, B and C in time $1 \mathrm{~ms}, 1 \mathrm{~s}, 1 \mathrm{~min}, 1 \mathrm{~h}$?
b) What is the factor by which the maximal problem size increase if the time is doubled for algorithms A, B and C ?

Exercise 2:

From the lecture you know the complexity of the fibrec-algorithm for computing the Fibonacci Numbers f_{i}. f_{i} is growing exponentially, given by the term $2^{(i-2) / 2} \leq f_{i} \leq 2^{i-2}$ for $i \geq 2$.
Prove the correctness of this expression !

