Universität Erlangen-Nürnberg
 Department of Computer Science 7
 Dr.-Ing. U. Klehmet
 Introduction to Data Structures and Algorithms

Exercise sheet 4

Exercise 5:

Find two functions f and g (both of type $\mathrm{N} \rightarrow \mathrm{N}$) such that neither $f(n)=O(g(n))$ nor $f(n)=\Omega(g(n))$. Show that your claim is correct!

Exercise 5a:

Given be the function $f(n)=n^{3}-3 n+10$
a) Define a non-tight asymptotic upper bound $o(g(n))$ for $f(n)$!
b) Give a formal justification using the definition of non-tight asymptotic upper bound!
c) Define an asymptotic upper bound and an asymptotic lower bound for $f(n)$ that is also a tight bound !
d) Give a formal justification using the definition of asymptotic tight bound!

Exercise 5b:

Prove by using
the rules for Landau notation that the following equation
holds: $\quad 4 n^{3}-100 n+1500=\Theta\left(n^{3}+2 n^{2}+3 n+4\right)$

Hint: Do not use the definition of Θ, but use the fact that polynomials are bounded asymptotically tight by n to the highest power of the polynomial.

Exercise 6:

Illustrate how the algorithm Insertion_sort works on the input sequence $\langle 77,16,35,37,100,20,59\rangle$!

Exercise 7:

Let $f(n)=\log (n!)$. Show that $f(n)=O(n \log n)$ and $f(n)=\Omega(n)$.

In the exercise class an improved asymptotic lower bound for $f(n)$ will be shown $(f(n)=\Omega(n \log n)$). Assuming this result had already been proved: What is the asymptotic growth of $f(n)$?

