Universität Erlangen-Nürnberg
Department of Computer Science 7
Dr.-Ing. U. Klehmet
Introduction to Data Structures and Algorithms

Exercise sheet 9

Exercise 26:

The keys $89,4,36,42,51,77,5,19$ are inserted in that order into a hash table with 7 slots. The hash function used is $h(k)=k \bmod 7$.
Show the final picture ! Are there collisions and if so, where?

Exercise 27:

Take letters of Latin alphabet as keys with subscripts such as $A_{1}, B_{2}, C_{3}, R_{18}$ and z_{26} where the subscripts mark

- the letter's position in alphabetical order, e.g. s_{19} for letter ' S ' as the $19^{\text {th }}$ letter in the Latin alphabet
- hash-table T contains space for 7 entries, numbered from 0 to 6
- in the table the keys B_{2}, J_{10} and s_{19} are already inserted

Insert N_{14}, X_{24}, and W_{23} into the table T by algorithm HASH-INSERT with Linear probing. The auxiliary hash function $h^{\prime}: U \rightarrow\{0,1, \ldots, m-1\}$ is defined by the Division method, where k in $h^{\prime}(k)$ should be the subscript number of the letter.

Exercise 28:

We have a hash table T of size $\mathrm{m}=13$ with the keys $79,13,69,98,72$, and 50 already present in the corresponding table positions $\mathrm{T}[1], \mathrm{T}[2]$ etc.

Insert the key 14 and then key 15 into the table T by use of algorithm HASH-INSERT with the open addressing method Double hashing. The auxiliary hash functions h_{1} and h_{2} are defined as follows: $h_{1}(k)=k \bmod 13$ and $h_{2}(k)=1+(k \bmod 11)$

	T
0	
1	79
2	13
3	
4	69
5	98
6	
7	72
8	
9	
10	
11	50
12	

