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 Given a sequence of data records,
each containing a key field and possibly some ‘satellite data’.

 Be K the set of keys.
Assume there is a (non-strict) ordering relation ‘≤’ (∊ K x K)
(so the keys may be ordered according to ‘≤’).
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The “sorting problem”

 If the original order of the data records is such,
that the sequence of the corresponding keys is

(key1, key2, …, keyn)
 Then the sorting problem is,

 to find a permutation (reordering)
of the input sequence of the data records
such that for the corresponding keys

(key1’, key2’, …, keyn’) 
the following holds:    

key1’ ≤ key2’ ≤ … ≤ keyn’

Sorting
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 There are many applications of sorting in practice
 We abstract from the particular application

and from the satellite data
and assume that the keys are numbers
on which the relation “≤” (or analogously “≥”) is defined.

 Some people think
that sorting is the “most fundamental problem”
in the study of algorithms!

 We start with a simple sorting algorithm: “Sort by insertion”
(the same algorithm we already know a little  from the
introduction):

Sorting
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Insertion sort

 The input is an array A[1..n]
containing a sequence of n = length[A] keys to be sorted.

 The algorithm in pseudo code:

Sorting

Insertion_sort(A)

for j:=2 to length[A] do
key := A[j]
i := j-1
while i>0 and A[i]>key do

A[i+1] := A[i]
i := i-1

A[i+1] := key
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 Example (Insertion Sort)

Sorting
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 Observations

 Sorting is done “in place”,
i.e. the keys are rearranged within the array A.

 The basic operation is the comparison of two keys,
as well as the assignment of values to a variable.

 Such an algorithm is called a “comparison sort”

Sorting
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Correctness of the algorithm (1)

 A typical way of showing that an algorithm is correct,
is to find a loop invariant.

 A loop invariant is a property with three aspects:
 Initialisation: The property is true at the beginning,

i.e. just before the first iteration of the loop

 Maintenance: It is true before an iteration of the loop, and it remains
true before the next iteration

 Termination: The loop terminates and so  the loop invariant gives us
a useful property to show that the algorithm is correct.

Sorting
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Correctness of the algorithm (2)

 We can show that the insertion sort algorithm is correct
by proving the following loop invariant:

At the beginning of the j-th iteration of the for loop, 
the subarray A[1..j-1] contains 
the first j-1 elements of the input array 
in sorted order.

 As this loop invariant
 holds at the beginning (j=2),
 It is maintained from one iteration to the next (j  j+1),

 upon termination, the algorithm “Insertion_sort” is correct
(here: j = n+1)!

Sorting
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Runtime analysis of Insertion Sort

 In the case of sorting the “basic operations of interest” are
 assignment of a value to a variable
 comparison of two elements

 Accordingly we define
the runtime T(n) for sorting an array of n elements:

T(n)  =  number of assignments + number of comparisons 
executed when sorting an array with n elements

(Remember: we measure the runtime of an algorithm as the number of 
primitive operations or “steps” executed)

Sorting
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Sorting

Runtime analysis of Insertion Sort (explicitly)

- the for loop is executed (n -1) times  and it contains 4 assignments 
(n = length [A])  

- a while loop in the j-th iteration of the for loop is executed      times
- the cost of one iteration of the while loop is 2 comparisons and 2 

assignments: 
- this yields the total cost:

- Best case: the array A[ ] is already sorted, the while condition is never true
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Sorting

Runtime analysis of Insertion Sort (explicitly)

- Worst case: the array A[ ] is in reverse sorted order, the while condition is 
true  j times
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 Let us summing up and we get the following runtime for  the
algorithm Insertion_sort

 Best case (“array is already sorted”):

Tbest_case(n) = 6n – 6 = Θ(n)  Linear runtime
 Worst case (“array is already sorted in reverse order”):

Tworst_case(n) = 2n2 +6n – 8 = Θ(n2)  Quadratic runtime

 Or:   T (n) = O(n2) and   T (n) = Ω(n)

 Please remember the more accurate notation:
 Tbest_case(n) ∊ Θ(n),  Tworst_case(n) ∊ Θ(n2)

Sorting
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 Remember:
Worst-case runtime of insertion sort is O(n2).

 Can we do better? And if so, how?

 Idea: “Divide-and-conquer approach” – three steps:
 Divide The original problem is split into smaller sub problems
 Conquer As long as the solution of the (smaller) sub problems is not

trivial - these are solved using the same procedure (recursion)
 Combine The solutions of the sub problems are suitably combined

to a solution of the larger problem

The same idea was employed for the algorithm pow
(iterative squaring algorithm for computing Fibonacci numbers)!

Sorting
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Merge Sort

 DIVIDE: Divide the n-element sequence (array) to be sorted into
two subsequences of (about) n/2 elements each

 CONQUER: Sort the two subsequences recursively using merge
sort

 COMBINE: Merge the two sorted subsequences to produce one
sorted sequence

- The recursion stops when the sequence to be sorted has length 1, since 
every sequence of length 1 is already sorted

- Now starts the Combine process to build sorted sequences of length 2
- …  of length 4  … 

Merge Sort
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 The most important part of Merge Sort is the merging (COMBINE)

 Procedure Merge (A,p,q,r)
 A is an array
 p, q, r are indices such that p ≤ q < r

 Procedure Merge assumes that  A[p .. q]  and  A[q+1 .. r]  are already
sorted

 It merges them to a single sorted subarray to replace the current subarray
A[p .. r]

Merge Sort
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Pseudo code for Merge(A, p, q, r)

Merge Sort

1   n1 := q-p+1 // nr. elem. “left”
2   n2 := r-q // nr. elem. “right” 

3 // create arrays 
L[1..n1+1] and R[1..n2+1]

4 for i:=1 to n1 do
5      L[i] := A[p+i-1]
6   for j:=1 to n2 do
7      R[j] := A[q+j]
8   L[n1+1]  := 
9   R[n2+1] := 

10  i := 1
11  j := 1
12  for k:=p to r do
13      if L[i] <= R[j]
14         then A[k] := L[i]
15              i := i+1
16         else A[k] := R[j]
17              j := j+1
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 Illustration of Merge

Merge Sort
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 Example:
 A[6 .. 11] = ( 2, 9, 12; 3, 5, 7 )
 call Merge (A, 6, 8, 11)

 Runtime of Merge = Θ(n),

where n = n1+n2 = r-p+1
 each of lines 1-3 and 8-11 takes constant time
 the for loops in lines 4 - 7 take Θ(n1+n2) = Θ(n) time
 the for loop in lines 12 - 17 have n iterations, each one with constant

time    Θ(n)

 Data size for Merge = 2·length(A) = 2n = Θ(n)
(compare with Insertion Sort that sorts „in place“)

Merge Sort
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Complete pseudo code for Merge Sort
(using procedure MERGE as subroutine)

 Initial call:
Merge_sort(A, 1, length(A))     (where length(A) = n)

Merge Sort

Merge_sort(A,p,r)

if p < r then
q := floor((p+r)/2)
Merge_sort(A,p,q)
Merge_sort(A,q+1,r)
Merge(A,p,q,r)
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 Example for Merge_sort

 call Merge_sort (A, 1, 7)

Merge Sort

9 4 2 17 2 3 5A

9 4 2 17 2 3 5 before

2 2 3 4 5 9 17 after
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Runtime analysis for Merge_sort 

 For simplicity we assume that n = length(A) is 2k for k∈ℕ.
(It can be shown that this assumption does not affect the order of growth.)

Now, the following recurrence equation is developed:

 Define T(n) = worst case running time of Merge_sort, where n = 2k

 Merge_sort on just one element takes constant time c

 DIVIDE: This step computes the middle of the sub array, which takes
constant time     Divide(n) = Θ(1) = c

 CONQUER: Recursively solve two sub problems each of size n/2, which
contributes 2T(n/2) to the running time  Conquer(n) = 2T(n/2)

Merge Sort
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Runtime analysis for Merge_sort 

 COMBINE: Merge
 Combine(n) = Θ(n) = c·n

 We simplify the calculation by defining S(n) = Divide(n) + Combine(n)
 S(n) = Θ(1) + Θ(n) = c·n

 Adding S(n) to the running time of CONQUER gives:

(where constant c represents the time required to solve problems of size 1)

Merge Sort  
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Runtime analysis for Merge_sort 

 For solution of this recurrence equation we use a recursion tree and
add up the cost

 So, lastly we get

 T(n) = cn log2 n + cn = Θ(n log2 n)

 The worst case runtime of Merge_sort is Θ(n log2 n)

Merge Sort
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Recurrence tree:

T(n) = cn + 2T(n/2) cn

T(n/2)            T(n/2)

T(n) = cn + 2T(n/2) = cn + 2[cn/2 + 2T(n/4)] = cn + (cn/2 + cn/2) + 4 T(n/4)

cn

cn/2 cn/2

T(n/4)     T(n/4)      T(n/4)     T(n/4)

Merge Sort
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Recurrence tree:

T(n) = cn + 2T(n/2) = cn + 2[cn/2 + 2T(n/4)] = cn + (cn/2 + cn/2) + 4 T(n/4) =

Merge Sort    
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 Heap sort
combines the advantages
of insertion sort and merge sort

 Its runtime is O(n log n)
(in contrast to insertion sort’s O(n2))

 It sorts in place
(in contrast to merge sort 
where twice as much memory is needed)

 It introduces another algorithm design technique: the use of
data structure (here a “heap”)

Heap Sort
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 A Binary Heap is a data structure
that can be viewed as a “nearly complete binary tree”

 The Binary Heap is filled completely,
with the exception 

that at the lowest level 
possibly one or more right most elements 
may be missing

Heap Sort
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 Each Binary Heap can be represented by an array
in the following way

 The mapping of the elements of the tree to the array elements
is one-to-one
 starting with the root of the tree
 and then sequentially down the layers of the tree

always from left to right

Heap Sort
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Heap Sort

Parent, left or right child
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Right 
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Functions for computing the index of parent, left or right child

 Root()
return 1

 for i > 1:
Parent(i)

return floor(i/2)
 Left(i)

return 2*i
 Right(i)

return 2*i + 1

Heap Sort
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Max-heaps

 A heap A is a Max-heap, if for all nodes i (i ≠ root)

A[Parent(i)] ≥ A[i] 

 That means
 The largest element is stored at the root
 For all subtrees S:

all elements in S are not larger than the element at the root of S

Heap Sort
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Max-heaps

 An array A that represents a heap has further on two attributes:
 length(A) = number of elements in the array
 heap_size(A) = number of elements in the heap stored in array A

 So elements A[heap_size(A)+1], …, A[length(A)]
are not elements of the heap

Heap Sort
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Height of heaps

 The height of a node in a heap
is the number of edges on the longest simple downward path 
from the node to a leaf.

 The height of a heap
is the height of its root.

Heap Sort
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Maintaining the Max-heap Property 

 The following procedure Max_heapify is important
for manipulating a max-heap

 It is assumed that the binary trees rooted at Left(i) and Right(i)
are max-heaps, when Max_heapify(A,i) is called

 If A[i] is smaller than one of its children,
then the procedure lets it “float down”

 Upon termination, the subtree rooted at i is a max-heap

Heap Sort
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Maintaining the Max-heap Property 

 The running time of Max_heapify
on a node of height h is   O(h) = O(log n)

Heap Sort

Max_heapify(A,i)

l := Left(i)
r := Right(i)

if l<=heap_size[A] and A[l]>A[i]
then largest := l
else largest := i

if r<=heap_size[A] and A[r]>A[largest]
then largest := r

if largest != i
then exchange A[i] <-> A[largest]

Max_heapify(A,largest)

Stop!
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Maintaining the Max-heap Property  - Example

 Is this a max-heap?
If not ⇨ call max_heapify(A, k) for suitable k 

(see below: Build_max_heap)

Heap Sort
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Building a Max-heap 

 Note that in the array representation for storing an n-element heap,
the leaves are indexed by
 floor(n/2) +1, floor(n/2) +2, …, n-1, n

 Example

 In general, leaves are represented by those indices i
where Left(i) = 2*i is outside the array boundary,
i.e. where 2*i > n, or i > n/2.

Heap Sort
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Building a Max-heap 

 Build a max_heap out of an arbitrary heap A:
 Use of  Max_heapify in a bottom-up manner to convert some array

A[1 …n]  into a max-heap
 Go through all nodes that are not leaf nodes - largest to smallest index

(the leaf nodes are max_heaps of course!) 
 and run Max_heapify on each of these nodes:

Heap Sort

Build_max_heap(A)

heap_size[A] := length[A]
for i:=floor(length[A]/2) downto 1 do

Max_heapify(A,i)
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Building a Max-heap:   Example

 It can be shown that the running time of Build_max_heap is O(n).
 For details see [Cormen et al.]

Heap Sort
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Building a Max-heap:   length [A] = 6      floor(length[A]/2) = 3 

Heap Sort
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Heap Sort

 Observe:
Whenever  Max_heapify  is called on node i, the two subtrees of that
node i are both max-heaps !
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The Heap Sort algorithm              

Aim: a completely sorted new array

 First A is turned into a max-heap              [Run time O(n)]
 In the for loop,

 the largest element of the heap (A[1]) is swapped
with the last element of the heap and the heap-size is decreased.

 Then A[1] … A[heap_size[A]] is turned into a max-heap
by Max_heapify(A,1) [Run time (n-1) O(log n)]

 Thus the overall run time is O(n log n).

Heap Sort

Heapsort(A)

Build_max_heap(A)

for i:= length[A] downto 2 do
exchange(A[1],A[i])
heap_size[A] := heap_size[A]-1
Max_heapify(A,1)
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Heap sort: Example

Heap Sort
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Heap Sort
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Heap Sort
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Heap Sort
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Heap Sort
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Heap Sort

heap_size[A] = heap_size[A] -1 = 1
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The resulting completely sorted array:

A:
= 3 4 5 7 13 18A
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stop
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Quick Sort

 Another well known sorting algorithm is Quick Sort.

 The characteristics of  Quick Sort are similar to Heap Sort
 Its average runtime is                        (obtained by randomization)

 It sorts in place

 On the other hand
 Quick Sort’s worst case runtime is           , 

so for arbitrary input the run time is 
 But it can be shown (see Corman)

that the average case performance of Quick Sort
is much closer to the best case than to the worst case

so Quick Sort is usually a good choice !

n)lg(n 

)O(n2

)(n2
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Quick Sort

p q q+1 r

L (<= A[q]) R (> A[q])

A ... ...

Quick Sort is a Divide and Conquer Algorithm
q-1

 DIVIDE: Partition the current subarray A[p .. r]  into two
subarrays  A[p ... q-1] and A[q+1 ...r] plus a pivot element A[q]
such that all elements of A[p ... q-1] are less than or equal to A[q]
and all elements of A[q+1 ...r] are greater than A[q]
the index q – the pivot index – is computed during the partitioning

 CONQUER: Sort the two subarrays A[p ... q-1] and A[q+1 … r]
by two recursive calls to Quick Sort

 COMBINE: Nothing is to do for combining the two subarrays
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Pseudo code for Quick Sort 

 Initial call for sorting an array A:
Quicksort (A,1,length(A))

Quick Sort

Quicksort (A,p,r)
if p < r then

q := Partition (A,p,r)
Quicksort (A,p,q-1)
Quicksort (A,q+1,r)
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Partitioning the Array 

Quick Sort

Partition (A,p,r)

x := A[r]      // pivot element 
i  := p -1 

for  j := p  to  r-1 do 
if  A[j] <=  x then

i := i+1
exchange (A[i], A[j])

exchange (A[i+1], A[r])
return (i+1)
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Pseudo code for Randomized Quick Sort 

Quick Sort

Randomized-Quicksort (A,p,r)
if p < r    then

q := Randomized-Partition (A,p,r)
Randomized-Quicksort (A,p,q-1)
Randomized-Quicksort (A,q+1,r)

Randomized-Partition (A,p,r) 
i := Random (p,r)
exchange A[r]         A[i]
return Partition (A,p,r)

 Now: Average runtime n) lg (nT(n) 




