Introduction to

Data Structures and Algorithms

Chapter: Sorting

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German) Martensstraße 3, 91058 Erlangen

Sorting

- Given a sequence of data records, each containing a key field and possibly some 'satellite data'.
- Be K the set of keys.

Assume there is a (non-strict) ordering relation ' \leq ' ($\in \mathrm{K} \times \mathrm{K}$) (so the keys may be ordered according to ' \leq ').

Record $_{1}$	Record $_{2}$
key $_{1}$	key $_{2}$
satellite	
data $_{1}$	satellite data $_{2}$

Record $_{n}$
key $_{n}$
satellite
data $_{n}$

The "sorting problem"

- If the original order of the data records is such, that the sequence of the corresponding keys is $\left(\right.$ key $_{1}$, key $_{2}, \ldots$, key $\left._{n}\right)$
- Then the sorting problem is,
- to find a permutation (reordering) of the input sequence of the data records such that for the corresponding keys

$$
\left(\operatorname{key}_{1^{\prime}}, \operatorname{key}_{2^{\prime}}, \ldots, \text { key }_{n^{\prime}}\right)
$$

the following holds:

$$
\text { key }_{1}{ }^{\prime} \leq \text { key }_{2}{ }^{\prime} \leq \ldots \leq \text { key }_{n}{ }^{\prime}
$$

Sorting

- There are many applications of sorting in practice
- We abstract from the particular application and from the satellite data and assume that the keys are numbers on which the relation " \leq " (or analogously " \geq ") is defined.
- Some people think that sorting is the "most fundamental problem" in the study of algorithms!
- We start with a simple sorting algorithm: "Sort by insertion" (the same algorithm we already know a little from the introduction):

Insertion sort

- The input is an array A[1..n] containing a sequence of $n=$ length $[A]$ keys to be sorted.
- The algorithm in pseudo code:

```
Insertion_sort(A)
    for \(j:=2\) to length[A] do
        key := A[j]
    i := j-1
    while i>0 and \(A[i]>k e y ~ d o\)
        A[i+1] := A[i]
        i := i-1
    A[i+1] := key
```


Sorting

- Example (Insertion Sort)

- Observations
- Sorting is done "in place", i.e. the keys are rearranged within the array A.
- The basic operation is the comparison of two keys, as well as the assignment of values to a variable.
- Such an algorithm is called a "comparison sort"

Sorting

Correctness of the algorithm (1)

- A typical way of showing that an algorithm is correct, is to find a loop invariant.
- A loop invariant is a property with three aspects:
- Initialisation: The property is true at the beginning,
i.e. just before the first iteration of the loop
- Maintenance: It is true before an iteration of the loop, and it remains true before the next iteration
- Termination: The loop terminates and so the loop invariant gives us a useful property to show that the algorithm is correct.

Correctness of the algorithm (2)

- We can show that the insertion sort algorithm is correct by proving the following loop invariant:

At the beginning of the j-th iteration of the for loop, the subarray $A[1 . . j-1]$ contains the first j -1 elements of the input array in sorted order.

- As this loop invariant
- holds at the beginning ($\mathrm{j}=2$),
- It is maintained from one iteration to the next ($\mathrm{j} \rightarrow \mathrm{j}+1$),
- upon termination, the algorithm "Insertion_sort" is correct (here: $\mathrm{j}=\mathrm{n}+1$)!

Sorting

Runtime analysis of Insertion Sort

- In the case of sorting the "basic operations of interest" are
- assignment of a value to a variable
- comparison of two elements
- Accordingly we define the runtime $T(n)$ for sorting an array of n elements:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n})= & \text { number of assignments + number of comparisons } \\
& \text { executed when sorting an array with } \mathrm{n} \text { elements }
\end{aligned}
$$

(Remember: we measure the runtime of an algorithm as the number of primitive operations or "steps" executed)

Sorting

Runtime analysis of Insertion Sort (explicitly)

- the for loop is executed ($n-1$) times and it contains 4 assignments ($n=$ length $[\mathrm{A}]$) $j:=2, \cdots, n \quad$ key $:=A[j] \quad i:=j-1$ and $A[i+1]:=k e y$
- a while loop in the j-th iteration of the for loop is executed t_{j} times
- the cost of one iteration of the while loop is 2 comparisons and 2 assignments: 2 comp: $i>0, A[i]>$ key; 2 assigmt: $A[i+1]:=A[i 1]$ and $i:=i-1$
- this yields the total cost:

$$
T(n)=(n-1) \cdot 4+\left(t_{2}+t_{3}+\cdots+t_{n}\right)(2+2)
$$

- Best case: the array $\mathrm{A}[$] is already sorted, the while condition is never true
$\Rightarrow t_{j}=1 \quad \forall j$
$\Rightarrow T(n)=(n-1) \cdot 4+(n-1) \cdot(2+0)=6 n-6=\Theta(n)$
\Rightarrow linear Runtime!

Sorting

Runtime analysis of Insertion Sort (explicitly)

- Worst case: the array A[] is in reverse sorted order, the while condition is true j times

$$
\begin{aligned}
& \Rightarrow t_{j}=j \quad \forall j \\
& \begin{aligned}
\Rightarrow T(n)= & (n-1) \cdot 4+4 \sum_{j=2}^{n} j=4(n-1)+4\left(\frac{n(n+1)}{2}-1\right) \\
& =2 n^{2}+6 n-8=\Theta\left(n^{2}\right)
\end{aligned}
\end{aligned}
$$

\Rightarrow quadratic Runtime!

Sorting

- Let us summing up and we get the following runtime for the algorithm Insertion_sort
- Best case ("array is already sorted"):

$$
T_{\text {best_case }}(n)=6 n-6=\Theta(n) \quad \Rightarrow \text { Linear runtime }
$$

- Worst case ("array is already sorted in reverse order"):

$$
T_{\text {worst_case }}(n)=2 n^{2}+6 n-8=\Theta\left(n^{2}\right) \quad \Rightarrow \text { Quadratic runtime }
$$

- Or: $T(n)=O\left(n^{2}\right)$ and $T(n)=\Omega(n)$
- Please remember the more accurate notation:
- $T_{\text {best_case }}(n) \in \Theta(n), T_{\text {worst_case }}(n) \in \Theta\left(n^{2}\right)$

Introduction to

Data Structures and Algorithms

Chapter: Sorting

- Merge Sort
- Friedrich-Alexander-Universität

Erlangen-Nürnberg

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German) Martensstraße 3, 91058 Erlangen

Sorting

- Remember:

Worst-case runtime of insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

- Can we do better? And if so, how?

■ Idea: "Divide-and-conquer approach" - three steps:

- Divide The original problem is split into smaller sub problems
- Conquer As long as the solution of the (smaller) sub problems is not trivial - these are solved using the same procedure (recursion)
- Combine The solutions of the sub problems are suitably combined to a solution of the larger problem

The same idea was employed for the algorithm pow (iterative squaring algorithm for computing Fibonacci numbers)!

Merge Sort

Merge Sort

- DIVIDE: Divide the n-element sequence (array) to be sorted into two subsequences of (about) n/2 elements each
- CONQUER: Sort the two subsequences recursively using merge sort
- COMBINE: Merge the two sorted subsequences to produce one sorted sequence
- The recursion stops when the sequence to be sorted has length 1 , since every sequence of length 1 is already sorted
- Now starts the Combine process to build sorted sequences of length 2
- ... of length 4 ...

Merge Sort

- The most important part of Merge Sort is the merging (COMBINE)
- Procedure Merge (A, p,q,r)
- A is an array
- p, q, r are indices such that $p \leq q<r$

A

- Procedure Merge assumes that $A[p$.. q] and $A[q+1$.. r] are already sorted
- It merges them to a single sorted subarray to replace the current subarray A[p .. r]

Merge Sort

Pseudo code for Merge(A, p, q, r)

n 1 := q-p+1 // nr. elem. "left"		$10 \mathrm{i}:=1$
2	$\mathrm{n} 2:=\mathrm{r}-\mathrm{q}$ // nr. elem. "right"	$11 \mathrm{j}:=1$
		12 for k : $=p$ to r do
3	// create arrays	13 if L[i] <= R[j]
	$\mathrm{L}[1 . . \mathrm{n} 1+1]$ and $\mathrm{R}[1 . . \mathrm{n} 2+1]$	14 then $\mathrm{A}[\mathrm{k}]:=\mathrm{L}[\mathrm{i}]$
4	for $\mathrm{i}=1$ to n 1 do	15 i := i+1
5	$L[i]:=A[p+i-1]$	16 else $A[k]:=\mathrm{R}[\mathrm{j}]$
6	for $\mathrm{j}=1$ to n 2 do	$17 \quad \mathrm{j}:=\mathrm{j}+1$
7	$\mathrm{R}[\mathrm{j}]:=\mathrm{A}[\mathrm{q}+\mathrm{j}]$	
	$L[n 1+1]:=\infty$	
9	$\mathrm{R}[\mathrm{n} 2+1]:=\infty$	

Merge Sort

- Illustration of Merge

Merge Sort

- Example:
- $A[6$.. 11] $=(2,9,12 ; 3,5,7)$
- call Merge (A, 6, 8, 11)

- Runtime of Merge $=\Theta(n)$,
where $\mathrm{n}=\mathrm{n} 1+\mathrm{n} 2=\mathrm{r}-\mathrm{p}+1$
- each of lines 1-3 and 8-11 takes constant time
- the for loops in lines 4-7 take $\Theta(n 1+n 2)=\Theta(n)$ time
- the for loop in lines 12-17 have n iterations, each one with constant time $\Rightarrow \Theta(n)$
- Data size for Merge $=2 \cdot$ length $(A)=2 n=\Theta(n)$ (compare with Insertion Sort that sorts „in place")

Merge Sort

Complete pseudo code for Merge Sort

(using procedure MERGE as subroutine)

Merge_sort(A,p,r)

$$
\begin{aligned}
& \text { if } p<r \text { then } \\
& q:=\text { floor((p+r)/2) } \\
& \text { Merge_sort(A,p,q) } \\
& \text { Merge_sort(A,q+1,r) } \\
& \text { Merge(A,p,q,r) }
\end{aligned}
$$

- Initial call:

Merge_sort(A, 1, length(A)) (where length $(A)=n)$

Merge Sort

- Example for Merge_sort

- call Merge_sort (A, 1, 7)

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 9 & 4 & 2 & 17 & 2 & 3 & 5 \\
\text { before } \\
\begin{array}{|l|l|l|l|l|l|l|}
\hline 2 & 2 & 3 & 4 & 5 & 9 & 17 \\
\text { after }
\end{array}
\end{array}
$$

Merge Sort

Runtime analysis for Merge_sort

- For simplicity we assume that $n=\operatorname{length}(A)$ is 2^{k} for $k \in \mathbb{N}$.
(It can be shown that this assumption does not affect the order of growth.)

Now, the following recurrence equation is developed:

■ Define $T(n)=$ worst case running time of Merge_sort, where $n=2^{k}$

- Merge_sort on just one element takes constant time c
- DIVIDE: This step computes the middle of the sub array, which takes constant time \Rightarrow Divide $(n)=\Theta(1)=c$
- CONQUER: Recursively solve two sub problems each of size $n / 2$, which contributes $2 T(n / 2)$ to the running time $\Rightarrow \operatorname{Conquer}(n)=2 T(n / 2)$

Merge Sort

Runtime analysis for Merge_sort

- COMBINE: Merge

$$
\Rightarrow \text { Combine(} \mathrm{n})=\Theta(\mathrm{n})=\mathrm{c} \cdot \mathrm{n}
$$

- We simplify the calculation by defining $\mathrm{S}(\mathrm{n})=$ Divide(n$)+$ Combine(n)

$$
\Rightarrow S(n)=\Theta(1)+\Theta(n)=c \cdot n
$$

- Adding $\mathrm{S}(\mathrm{n})$ to the running time of CONQUER gives:

$$
T(n)= \begin{cases}c & \text { if } \mathrm{n}=1 \\ 2 T(n / 2)+c \cdot n & \text { if } \mathrm{n}>1\end{cases}
$$

(where constant c represents the time required to solve problems of size 1)

Merge Sort

Runtime analysis for Merge_sort

- For solution of this recurrence equation we use a recursion tree and add up the cost
- So, lastly we get
$\Rightarrow \mathrm{T}(\mathrm{n})=\mathrm{cn} \log _{2} \mathrm{n}+\mathrm{cn}=\Theta\left(\mathrm{n} \log _{2} \mathrm{n}\right)$
\Rightarrow The worst case runtime of Merge_sort is $\Theta\left(n \log _{2} n\right)$

Merge Sort

Recurrence tree:

$T(n)=c n+2 T(n / 2)$

$T(n)=c n+2 T(n / 2)=c n+2[c n / 2+2 T(n / 4)]=c n+(c n / 2+c n / 2)+4 T(n / 4)$

Merge Sort

Recurrence tree:

```
\(T(n)=c n+2 T(n / 2)=c n+2[c n / 2+2 T(n / 4)]=c n+(c n / 2+c n / 2)+4 T(n / 4)=\)
\(=\mathrm{c} \cdot \mathrm{n}+(\mathrm{c} \cdot \mathrm{n} / 2+\mathrm{c} \cdot \mathrm{n} / 2)+\overbrace{\mathrm{c} \cdot \mathrm{n} / 4+\cdots+\mathrm{c} \cdot \mathrm{n} / 4}^{4-\text { times }}+\cdots+\overbrace{\mathrm{c} \cdot \mathrm{n} / \mathrm{n}+\cdots+\mathrm{c} \cdot \mathrm{n} / \mathrm{n}}^{\mathrm{n} \text {-times }}=\)
\(=\overbrace{\mathrm{cn}+\mathrm{cn} \cdots+\mathrm{cn}}^{\left(\log _{2} n+1\right)-\text { times }}=\left(\log _{2} \mathrm{n}+1\right) \cdot \mathrm{cn}\)
    cost:
    \(\log _{2} \mathrm{n}+1 \mathrm{c}\)
    \(\Rightarrow\) Total cost : \(\left(\log _{2} \mathrm{n}+1\right) \cdot \mathrm{cn}=\mathrm{cn} \cdot \log _{2} \mathrm{n}+\mathrm{cn}=\underline{\Theta(\mathrm{n} \cdot \lg \mathrm{n})}\)
```


Introduction to

Data Structures and Algorithms

Chapter: Sorting
- Heap Sort

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Lehrstuhl Informatik 7 (Prof. Dr. -Ing. Reinhard German) Martensstraße 3, 91058 Erlangen

Heap Sort

- Heap sort
combines the advantages
of insertion sort and merge sort
- Its runtime is $O(n \log n)$
(in contrast to insertion sort's $\mathrm{O}\left(\mathrm{n}^{2}\right)$)
- It sorts in place
(in contrast to merge sort
where twice as much memory is needed)
- It introduces another algorithm design technique: the use of data structure (here a "heap")

Heap Sort

- A Binary Heap is a data structure that can be viewed as a "nearly complete binary tree"
- The Binary Heap is filled completely, with the exception
that at the lowest level
possibly one or more right most elements may be missing

Examples:

Heap Sort

- Each Binary Heap can be represented by an array in the following way

- The mapping of the elements of the tree to the array elements is one-to-one
- starting with the root of the tree
- and then sequentially down the layers of the tree always from left to right

Heap Sort

Parent, left or right child

Heap Sort

Functions for computing the index of parent, left or right child

- Root() return 1
- for $\mathrm{i}>1$:

Parent(i)
return floor(i/2)

- Left(i)
return 2*i
- Right(i)
return 2*i + 1

Heap Sort

Max-heaps

- A heap A is a Max-heap, if for all nodes $i(i \neq$ root $)$

$A[$ Parent $(i)] \geq A[i]$

- That means
- The largest element is stored at the root
- For all subtrees S:
all elements in S are not larger than the element at the root of S

Example 2:
not a max-heap
(as $5 \geq 3$)

Heap Sort

Max-heaps

- An array A that represents a heap has further on two attributes:
- length $(A)=$ number of elements in the array
- heap_size $(A)=$ number of elements in the heap stored in array A

- So elements A[heap_size(A)+1], ..., A[length(A)] are not elements of the heap

Heap Sort

Height of heaps

- The height of a node in a heap
is the number of edges on the longest simple downward path from the node to a leaf.
- The height of a heap is the height of its root.

Heap Sort

Maintaining the Max-heap Property

- The following procedure Max_heapify is important for manipulating a max-heap
- It is assumed that the binary trees rooted at Left(i) and Right(i) are max-heaps, when Max_heapify (A, i) is called
- If $A[i]$ is smaller than one of its children, then the procedure lets it "float down"
- Upon termination, the subtree rooted at i is a max-heap

Heap Sort

Maintaining the Max-heap Property

```
Max_heapify(A,i)
    l := Left(i)
    r := Right(i)
    if l<=heap_size[A] and A[l]>A[i]
        then largest := l
        else largest := i
    if r<=heap_size[A] and A[r]>A[largest]
        then largest := r
    if largest != i
        then exchange A[i] <-> A[largest]
            Max_heapify(A,largest)
```

 Stop!
 - The running time of Max_heapify on a node of height h is $O(h)=O(\log n)$

Heap Sort

Maintaining the Max-heap Property - Example

- Is this a max-heap?

If not \Rightarrow call max_heapify (A, k) for suitable k
(see below: Build_max_heap)

Heap Sort

Building a Max-heap

- Note that in the array representation for storing an n-element heap, the leaves are indexed by
- floor(n/2) +1, floor(n/2) +2, $\ldots, n-1, n$
- Example

- In general, leaves are represented by those indices i where Left($(i)=2^{*} i$ is outside the array boundary,
i.e. where $2 * \mathrm{i}>\mathrm{n}$, or $\mathrm{i}>\mathrm{n} / 2$.

Heap Sort

Building a Max-heap

- Build a max_heap out of an arbitrary heap A:
- Use of Max_heapify in a bottom-up manner to convert some array A[1 ...n] into a max-heap
- Go through all nodes that are not leaf nodes - largest to smallest index (the leaf nodes are max_heaps of course!)
- and run Max_heapify on each of these nodes:

```
Build_max_heap(A)
heap_size[A] := length[A]
for i:=floor(length[A]/2) downto 1 do
    Max_heapify(A,i)
```


Heap Sort

Building a Max-heap: Example

■ It can be shown that the running time of Build_max_heap is $O(n)$.

- For details see [Cormen et al.]

Heap Sort

Building a Max-heap: length $[A]=6 \Rightarrow$ floor $($ length $[A] / 2)=3$

Heap Sort

- Observe:

Whenever Max_heapify is called on node i , the two subtrees of that node i are both max-heaps !

Heap Sort

The Heap Sort algorithm

Aim: a completely sorted new array
Heapsort(A)
Build_max_heap(A)
for $i:=$ length[A] downto 2 do
exchange(A[1], $A[i])$
heap_size[A] := heap_size[A]-1
Max_heapify(A,1)

- First A is turned into a max-heap
[Run time $\mathrm{O}(\mathrm{n})$]
- In the for loop,
- the largest element of the heap (A[1]) is swapped with the last element of the heap and the heap-size is decreased.
- Then $A[1]$... A[heap_size[A]] is turned into a max-heap
by Max_heapify $(A, 1)$
[Run time $(n-1) \mathrm{O}(\log n)$]
- Thus the overall run time is $\underline{(\mathrm{O} \log \mathrm{n})}$.

Heap Sort

Heap sort: Example

Exchange (A[1],A[6])

Heap Sort

heap_size[A] = heap_size[A] - $1=6-1=5 \curvearrowright$

Heap Sort

Heap Sort

Heap Sort

Heap Sort

heap_size[A] = heap_size[A] -1 = 1
$\longmapsto \mathrm{i}<2 \quad$ stop

The resulting completely sorted array:

Quick Sort

- Another well known sorting algorithm is Quick Sort.
- The characteristics of Quick Sort are similar to Heap Sort
- Its average runtime is $\Theta(\mathrm{n} \cdot \lg \mathrm{n})$ (obtained by randomization)
- It sorts in place
- On the other hand
- Quick Sort's worst case runtime is $\Theta\left(\mathrm{n}^{2}\right)$, so for arbitrary input the run time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- But it can be shown (see Corman) that the average case performance of Quick Sort is much closer to the best case than to the worst case
\Rightarrow so Quick Sort is usually a good choice !

Quick Sort

Quick Sort is a Divide and Conquer Algorithm

- DIVIDE: Partition the current subarray A[p .. r] into two subarrays $A[p \ldots q-1]$ and $A[q+1 \ldots r]$ plus a pivot element $A[q]$ -such that all elements of $A[p \ldots q-1]$ are less than or equal to $A[q]$ -and all elements of $A[q+1 \ldots r]$ are greater than $A[q]$
-the index q - the pivot index - is computed during the partitioning
- CONQUER: Sort the two subarrays A[p ... q-1] and A[q+1 ... r] by two recursive calls to Quick Sort
- COMBINE: Nothing is to do for combining the two subarrays

Quick Sort

Pseudo code for Quick Sort

Quicksort (A,p,r)

if $p<r$ then
q := Partition (A,p,r)
Quicksort (A,p,q-1)
Quicksort (A,q+1,r)

- Initial call for sorting an array A :

Quicksort (A,1,length(A))

Quick Sort

Partitioning the Array

```
Partition (A,p,r)
    x := A[r] // pivot element
    i := p-1
    for j:= p to r-1 do
        if }A[j]<= x the
            i := i+1
            exchange (A[i], A[j])
exchange (A[i+1], A[r])
return (i+1)
```


Quick Sort

Pseudo code for Randomized Quick Sort

Randomized-Quicksort (A,p,r)

if $p<r$ then
$\mathrm{q}:=$ Randomized-Partition (A,p,r)
Randomized-Quicksort (A,p,q-1)
Randomized-Quicksort (A,q+1,r)

Randomized-Partition (A,p,r)
$\mathrm{i}:=$ Random (p, r)
exchange $A[r] \longleftrightarrow A[i]$
return Partition (A, p,r)

- Now: Average runtime $\mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \cdot \lg \mathrm{n})$

